Wednesday, October 5, 2016

Gleitende Durchschnittliche Glättungszeitreihen

Vorhersage von Smoothing Techniques Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen, ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die früheren Beobachtungen gleich gewichtet werden, weist Exponentialglättung exponentiell abnehmende Gewichte zu, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 / (n1) OR n (2 - a) / a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) / Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu beurteilen und zwischen den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang einige Male wiederholen, um die erforderlichen Kurzzeitprognosen zu erhalten. Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Eine Bewegung wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Mögen Sie diese kostenlose Website Bitte teilen Sie diese Seite auf GoogleIn Praxis der gleitende Durchschnitt wird eine gute Schätzung des Mittelwerts der Zeitreihe liefern, wenn der Mittelwert konstant ist oder sich langsam ändert. Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein zufälliges Rauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 hinzugefügt wird. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, da das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 beziehungsweise E7 berechnet. Die Beruhigungsdaten entfernen die Zufallsvariation und zeigen Trends und zyklische Komponenten Inhärent in der Sammlung von Daten, die über die Zeit genommen werden, ist eine Form von zufälliger Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Er / sie nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Durchschnitt der Daten 10. Der Manager beschließt, dies als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfachen Mittelwert oder Mittelwert aller vergangenen Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Eine andere Methode, den Durchschnitt zu berechnen, ist die Addition jedes Wertes durch die Anzahl der Werte oder 3/3 4/3 5/3 1 1.3333 1.6667 4. Der Multiplikator 1/3 wird als Gewicht bezeichnet. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (links (frac rechts)) sind die Gewichte, und natürlich summieren sie sich auf 1.5.2 Glättungszeitreihe Glättung wird üblicherweise durchgeführt, um uns besser zu sehen, Muster, Trends zum Beispiel in Zeitreihen zu sehen. Im Allgemeinen glätten Sie die unregelmäßige Rauheit, um ein klareres Signal zu sehen. Für saisonale Daten, könnten wir glätten die Saisonalität, so dass wir den Trend identifizieren können. Smoothing stellt uns nicht mit einem Modell, aber es kann ein guter erster Schritt bei der Beschreibung der verschiedenen Komponenten der Serie. Der Begriff Filter wird manchmal verwendet, um ein Glättungsverfahren zu beschreiben. Wenn zum Beispiel der geglättete Wert für eine bestimmte Zeit als eine lineare Kombination von Beobachtungen für Umgebungszeiten berechnet wird, kann man sagen, dass wir ein lineares Filter auf die Daten angewandt haben (nicht dasselbe wie das Ergebnis, dass das Ergebnis eine gerade Linie ist der Weg). Die traditionelle Verwendung des Begriffs gleitender Durchschnitt ist, dass wir zu jedem Zeitpunkt (möglicherweise gewichtete) Mittelwerte der beobachteten Werte bestimmen, die eine bestimmte Zeit umgeben. Zum Zeitpunkt t. Ein zentrierter gleitender Durchschnitt der Länge 3 mit gleichen Gewichten wäre der Mittelwert der Werte zu Zeiten t -1. T. Und t1. Um Saisonalität aus einer Serie wegzunehmen, so können wir besser sehen Trend, würden wir einen gleitenden Durchschnitt mit einer Länge Saisonspanne verwenden. Somit wurde in der geglätteten Reihe jeder geglättete Wert über alle Jahreszeiten gemittelt. Dies kann getan werden, indem man einen einseitigen gleitenden Durchschnitt betrachtet, in dem Sie alle Werte für die Werte der letzten Jahre oder einen zentrierten gleitenden Durchschnitt, in dem Sie Werte sowohl vor als auch nach der aktuellen Uhrzeit verwenden, mittlere. Für vierteljährliche Daten können wir beispielsweise einen geglätteten Wert für die Zeit t als (x t x t - 1 x t - 2 x t - 3) / 4, den Durchschnitt dieser Zeit und die vorhergehenden 3 Quartale, definieren. Im R-Code ist dies ein einseitiger Filter. Ein zentrierter gleitender Durchschnitt erzeugt ein wenig Schwierigkeit, wenn wir eine gerade Anzahl von Zeitperioden in der Saisonspanne haben (wie wir es normalerweise tun). Um Saisonalität in vierteljährlichen Daten zu glätten. Um Trend zu identifizieren, ist die übliche Konvention, den gleitenden Durchschnitt des gleitenden Mittels zum Zeitpunkt t zu verwenden, um Saisonalität in den Monatsdaten weg zu glätten. Um den Trend zu identifizieren, besteht die übliche Konvention darin, den zum Zeitpunkt t geglätteten gleitenden Durchschnitt zu verwenden. Das heißt, wir setzen das Gewicht 1/24 auf Werte zu Zeiten t6 und t6 und Gewicht 1/12 auf alle Werte zu allen Zeiten zwischen t5 und T5. In der R-Filter-Befehl, auch einen zweiseitigen Filter, wenn wir Werte, die sowohl vor als auch nach der Zeit, für die Glättung wurden verwendet werden. Beachten Sie, dass auf Seite 71 unseres Buches die Autoren gleiche Gewichte über einen zentrierten saisonalen gleitenden Durchschnitt anwenden. Das ist auch okay. Zum Beispiel kann eine vierteljährliche Glättung geglättet werden zum Zeitpunkt t ist Frac x frac x frac xt frac x frac x Ein monatlich glatter könnte ein Gewicht von 1/13 auf alle Werte von Zeiten t-6 bis t6 anwenden. Der Code, den die Autoren auf Seite 72 verwenden, nutzt einen rep-Befehl, der einen Wert eine bestimmte Anzahl von Malen wiederholt. Sie verwenden nicht den Filterparameter innerhalb des Filterbefehls. Beispiel 1 Vierteljährliche Bierproduktion in Australien In Lektion 1 und Lektion 4 haben wir eine Reihe von vierteljährlichen Bierproduktionen in Australien betrachtet. Der folgende R-Code erzeugt eine geglättete Reihe, die es ermöglicht, das Trendmuster zu sehen und dieses Trendmuster auf demselben Graphen wie die Zeitreihen aufzuzeichnen. Der zweite Befehl erstellt und speichert die geglättete Serie im Objekt namens trendpattern. Beachten Sie, dass innerhalb des Filterbefehls der Parameter benannte Filter die Koeffizienten für unsere Glättung ergibt und Seiten 2 eine zentrierte Glättung berechnet. Beerprod scan (beerprod. dat) trendpattern filter (beerprod, filter c (1/8, 1/4, 1/4, 1/4, 1/8), seiten2) plot (beerprod, typ b, gleitender durchschnittlicher jährlicher trend ) Lines (trendpattern) Heres das Ergebnis: Wir können das Trendmuster von den Datenwerten subtrahieren, um einen besseren Einblick in die Saisonalität zu erhalten. Das Ergebnis: Eine weitere Möglichkeit zur Glättung von Reihen, um Trend zu sehen, ist der einseitige Filter trendpattern2 filter (beerprod, filter c (1/4, 1/4, 1/4, 1/4), seiten1) Damit ist der geglättete Wert der Durchschnitt des vergangenen Jahres. Beispiel 2. U. S. Monatliche Arbeitslosigkeit In den Hausaufgaben für Woche 4 sahen Sie eine monatliche Reihe von US-Arbeitslosigkeit für 1948-1978. Heres eine Glättung getan, um den Trend zu betrachten. Trendunemployfilter (arbeitslos, filterc (1 / 24,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12, (Trendunemploy, start c (1948,1), freq 12) Handlung (trendunemploy, mainTrend in US-Arbeitslosigkeit, 1948-1978, xlab-Jahr) Nur der geglättete Trend ist gezeichnet. Der zweite Befehl identifiziert die Kalenderzeitmerkmale der Serie. Das macht die Handlung eine sinnvollere Achse. Die Handlung folgt. Für nicht-saisonale Serien, Sie Arent gebunden, um über eine bestimmte Spanne glätten. Zur Glättung sollten Sie mit gleitenden Mittelwerten verschiedener Spannen experimentieren. Diese Zeitspannen könnten relativ kurz sein. Das Ziel ist, um die rauen Kanten zu klopfen, um zu sehen, welche Tendenz oder Muster dort sein könnte. Andere Glättungsmethoden (Abschnitt 2.4) Abschnitt 2.4 beschreibt einige anspruchsvolle und nützliche Alternativen zur gleitenden mittleren Glättung. Die Details können skizzenhaft erscheinen, aber das ist okay, weil wir nicht wollen, in vielen Details für diese Methoden zu erhalten. Von den alternativen Methoden, die in Abschnitt 2.4 beschrieben werden, kann die niedrigste (lokal gewichtete Regression) am häufigsten verwendet werden. Beispiel 2 Fortsetzung Das folgende Diagramm ist geglättet Trendlinie für die US-Arbeitslosen-Serie, gefunden mit einem Lowess Glättung, in dem eine erhebliche Menge (2/3) zu jedem geglättet Schätzung beigetragen. Beachten Sie, dass dies die Serie mehr aggressiv als die gleitenden Durchschnitt geglättet. Die Kommandos waren Arbeitslosigkeit ts (Arbeitslosigkeit, Anfang c (1948,1), freq12) Handlung (Lowess (Arbeitslosigkeit, f 2/3), Haupt Lowess Glättung der US-Arbeitslosigkeit Trend) Single Exponential Glättung Die grundlegende Vorhersagegleichung für einzelne exponentielle Glättung Wird oft als Hut gegeben alpha xt (1-alpha) hat t text Wir prognostizieren, dass der Wert von x zum Zeitpunkt t1 eine gewichtete Kombination des beobachteten Wertes zum Zeitpunkt t und des prognostizierten Wertes zum Zeitpunkt t ist. Obwohl die Methode eine Glättungsmethode genannt wird, wird sie hauptsächlich für Kurzzeitprognosen verwendet. Der Wert von heißt Glättungskonstante. Aus welchem ​​Grund auch immer, 0.2 ist eine beliebte Standard-Auswahl von Programmen. Dies ergibt ein Gewicht von 0,2 auf die neueste Beobachtung und ein Gewicht von 1,2,8 auf die jüngste Prognose. Bei einem relativ kleinen Wert wird die Glättung relativ umfangreicher sein. Bei einem relativ großen Wert ist die Glättung relativ weniger umfangreich, da mehr Gewicht auf den beobachteten Wert gesetzt wird. Dies ist eine einfache, einstufige Prognosemethode, die auf den ersten Blick kein Modell für die Daten erfordert. Tatsächlich ist dieses Verfahren äquivalent zu der Verwendung eines ARIMA (0,1,1) - Modells ohne Konstante. Das optimale Verfahren ist, ein ARIMA (0,1,1) Modell an den beobachteten Datensatz anzupassen und die Ergebnisse zu verwenden, um den Wert von zu bestimmen. Dies ist optimal im Sinne der Schaffung der besten für die bereits beobachteten Daten. Obwohl das Ziel eine Glättung und eine Vorausschätzung ist, bringt die Äquivalenz zum ARIMA-Modell (0,1,1) einen guten Punkt. Wir sollten nicht blind gelten exponentielle Glättung, weil die zugrunde liegende Prozess möglicherweise nicht gut modelliert werden durch eine ARIMA (0,1,1). ARIMA (0,1,1) und exponentielle Glättungsäquivalenz Betrachten wir ein ARIMA (0,1,1) mit Mittelwert 0 für die ersten Differenzen, xt - x t-1: Anfangshut amp amp xt theta1 wt amp amp xt theta1 (xt - hat t) amp amp (1 theta1) xt - theta1hat neigen. Wenn wir (1 1) und damit - (1) 1 zulassen, sehen wir die Äquivalenz zu Gleichung (1) oben. Warum die Methode aufgerufen wird Exponentielle Glättung Dies ergibt die folgenden: Anfangshut amp amp alpha xt (1-alpha) alpha x (1-alpha) Hut amp amp alpha xt alpha (1-alpha) x (1-alpha) 2hat end Weiter Auf diese Weise durch sukzessives Ersetzen des prognostizierten Wertes auf der rechten Seite der Gleichung. Dies führt zu: Hut alpha xt alpha (1-alpha) x alpha (1-alpha) 2 x dots alpha (1-alpha) jx dots alpha (1-alpha) x1 text Gleichung 2 zeigt, dass der prognostizierte Wert ein gewichteter Durchschnitt ist Aller vergangenen Werte der Serie, mit exponentiell wechselnden Gewichten, wie wir zurück in der Serie bewegen. Optimale Exponentialglättung in R Grundsätzlich passen wir nur einen ARIMA (0,1,1) an die Daten an und bestimmen den Koeffizienten. Wir können die Anpassung der glatten durch Vergleich der vorhergesagten Werte mit der tatsächlichen Reihe untersuchen. Exponentielle Glättung neigt dazu, mehr als eine Prognose-Tool als eine echte glatte verwendet werden, so waren auf der Suche zu sehen, ob wir eine gute Passform haben. Beispiel 3. N 100 monatliche Beobachtungen zum Logarithmus eines Ölpreisindexes in den Vereinigten Staaten. Die Datenreihe ist: Eine Anpassung von ARIMA (0,1,1) in R ergab einen MA (1) - Koeffizienten von 0,3877. So (1 1) 1,3877 und 1- -0,3877. Die exponentielle Glättungsvorhersagegleichung ist Hut 1.3877xt - 0.3877hat t Zum Zeitpunkt 100 ist der beobachtete Wert der Reihe x 100 0.86601. Der vorhergesagte Wert für die Serie zu diesem Zeitpunkt ist also die Prognose für die Zeit 101 hat 1.3877x - 0.3877hat 1.3877 (0.86601) -0.3877 (0.856789) 0.8696 Im Folgenden ist, wie gut die glattere passt die Serie. Sein eine gute Passform. Das ist ein gutes Zeichen für die Prognose, der Hauptzweck für diese glatter. Hier sind die Befehle, die verwendet werden, um die Ausgabe für dieses Beispiel zu erzeugen: Ölindexabtastung (oildata. dat) Diagramm (Ölindex, Typ b, Hauptprotokoll der Ölindex-Reihe) expsmoothfit arima (Ölindex, Auftrag c (0,1,1)) expsmoothfit Um zu sehen, die Arima-Ergebnisse prognostiziert Ölindex - expsmoothfitresiduals vorhergesagten Werten Plot (oilindex, typeb, main Exponential Glättung der Log-of-Oil-Index) Zeilen (Vorhersagen) 1.3877oilindex100-0.3877predicteds100 Prognose für die Zeit 101 Double Exponential Glättung Doppelte exponentielle Glättung könnte verwendet werden, wenn theres (Langfristig oder kurzfristig), aber keine Saisonalität. Im Wesentlichen erzeugt das Verfahren eine Prognose durch Kombinieren von exponentiell geglätteten Schätzungen des Trends (Steigung einer Geraden) und des Pegels (grundsätzlich des Abschnitts einer Geraden). Zur Aktualisierung dieser beiden Komponenten werden jeweils zwei verschiedene Gewichte oder Glättungsparameter verwendet. Das Glättungsniveau entspricht mehr oder weniger einer einfachen exponentiellen Glättung der Datenwerte, und der geglättete Trend entspricht mehr oder weniger einer einfachen exponentiellen Glättung der ersten Differenzen. Das Verfahren entspricht der Anpassung eines ARIMA (0,2,2) Modells, ohne Konstante kann es mit einem ARIMA (0,2,2) Fit durchgeführt werden. (1-B) 2 xt (1theta1B theta2B2) wt. Navigation


No comments:

Post a Comment